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The general axisymmetric creeping motion of a spherical particle in a stagnation 
region near a finite surface is modelled by the motion of a sphere of arbitrary size 
towards a disk for the fo l lodg  conditions: (a) pure translation in quiescent fluid, 
(3) uniform flow past a fixed sphere-disk configuration, and (c) a neutrally buoyant 
sphere carried by the fluid towards a disk. The combined analytic and numerical 
solution procedure is similar to that described in Dagan, Weinbaum & Pfeffer (1982b) 
for the motion of a sphere towards an orifice. 

The drag force acting on the sphere and on the disk under the flow conditions 
mentioned above is presented. In addition, the fluid velocity field has been obtained 
for the case of uniform flow past a fixed sphere-disk configuration. These solutions 
show the formation and coalescence of separated regions of closed streamlines adjacent 
to the sphere and the disk. 

1. Introduction 
In this paper we examine the general axisymmetric creeping motion of a spherical 

particle in a stagnation region of a finite planar surface. This flow is modelled by 
studying the axisymmetric motion of a sphere towards a disk of arbitrary size or the 
uniform flow past such configuration. The solution technique is an application of the 
combined analytical-numerical procedure described by Dagan, Weinbaum & Pfeffer 
(19823) for the inverse geometry of a sphere approaching an orifice. The strong- 
interaction solutions presented herein are also the first to explore the effect of a finite 
planar boundary on the motion of a sphere. 

This stagnation flow has attracted interest in the last few years because of various 
applications in which a small particle moves in the stagnation region or the wake of a 
much larger particle. In particular, the determination of the drag force on the small 
particle is important in problems of agglomeration of aerosols and removal of particu- 
lates from flows. A closely related problem was treated by Stimson & Jeffery (1926), 
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who presented the solution for the drag on two unequal spheres moving with the same 
velocity. Cooley & O'Neill(l969) gave numerical values for these forces, and Wacholder 
& Sather (1974) calculated the velocities of pairs of unequal spheres seztling under 
gravity. Recently, Liao & Krueger (1980) presented a collocation solution to a similar 
system of two spheroids. The advantage of this solution technique is that it can be 
applied to geometries that do not conform to a natural co-ordinate system, but its 
convergence is quite slow when the relative volumes of the particles is large. The entire 
question of the behaviour of a particle in a stagnation region can be generalized by 
considering uniform flow past a coaxial sphere-disk configuration. 

The limiting case of the present flow problem, a disk of infinite radius, was first 
solved by Brenner (1961), who made use of the spherical bipolar co-ordinate trans- 
formation to satisfy the no-slip boundary conditions on the sphere and on the infinite 
plane wall simultaneously. This geometry, however, cannot admit a stagnation flow 
which is valid everywhere with uniform velocity at infinity. 

The solution technique used in this paper follows closely the procedure described in 
Dagan et al. (1982b). Two different stream-function representations are chosen: one 
for the region to the left of the plane of the disk containing the sphere and one for 
the remaining infinite half-space to the right of the disk. The no-slip boundary condi- 
tions in each region are satisfied on the disk surface in terms of the unknown velocity 
a t  the plane of the disk. The two fields are kinematically and dynamically matched by 
requiring continuity of the velocity and the normal and tangential stress-tensor com- 
ponents at the interface. The dynamic matching condition provides a solution for the 
interfacial velocity expressed in terms of the remaining unknown constant coefficients 
in the series solution for the disturbances produced by the sphere. Finally, the no-slip 
boundary conditions are satisfied at discrete points on the surface of the sphere, 
yielding numerical results for the spherical coefficients. 

Owing to the linearity of the creeping motion equations and the boundary condi- 
tions, the general flow problem can be treated as the superposition of two flows: (i) 
translation of the sphere along a common axis towards a rigidly held disk in a quiescent 
fluid, (ii) uniform axisymmetric flow past a stationary sphere and disk. 

The paper is organized in five sections. Section 2 contains the formulation of the 
problem. Section 3 presents solutions for both a sphere translating in quiescent fluid 
and for the uniform flow past a fixed sphere-disk configuration. In f 4 the results for 
the drag on the disk are presented. Section 5 considers the zero drag motion of a 
neutrally buoyant sphere carried by the flow towards the disk. Finally, f 6 contains 
some comments on the extension of the solution technique in future research. This 
concluding section also gives a discussion of the relative merits of the boundary 
collocation series technique and two other solution methods, the integral-equation 
approach and finite-element method, which have been used for solving non-orthogonal 
or mixed-co-ordinate boundary-value problems in low-Reynolds-number flow. 

2. Formulation 
The problem consists of a sphere of radius a' translating axisymmetrically with a 

constant velocity V' towards a disk of radius b' held rigidlj. at  a distance d' from the 
sphere. The fluid at  infinity is assumed to have uniform velocity U&. Figure 1 shows 
the geometry using dimensionless (unprimed) variables and co-ordinates scaled to the 
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FIGURE 1. Geometry for the problem of a sphere translating 
axisymmetrically towards a disk. 

disk radius. The stream function $', the velocity V', the drag force F' and the pressure 
p' can be expressed in dimensionless form using the fluid density p, the kinematic 
viscosity v and the disk radius b' as follows: 

(2.1 a d )  

The flow field is divided into two regions. The half-space containing the sphere 
z c a?, and the infinite half-space z > d. Making use of the general solution of the creep- 
ing motion equations for axisymmetric flow, one can write the stream function for 
the region z < d as the linear superposition 

9'= 9 W + l L - 8  (2.2) 

Here +w represents the disturbances produced by the plane of the disk plus a uni- 
form flow at infinity and is given by 

$w = &UmR2+ BJ,(wR) [A,(w)+zB1(w)]e"Bdw, (2.3) 
!Om 

where A,(@) and B,(w) are unknown functions of w, and J1 is the ordinary Bessel 
function of the first kind of order one. 

represents the disturbances generated by the sphere, 
written in spherical co-ordinates, and is given by 

The second part in (2.2), 

m 

n=2 
= (B,r-n+l+ Dnr-n+s)In(f). 

Here f = cos 8, B, and D, are unknown constant coefficients, and I, is the Gegenbauer 
function of order n and degree - 4. 

For the region z 2 d, a Fourier-Bessel integral representation is chosen for the 
stream function in the form of (2.3) which yields a uniform velocity as z approaches 
infinity, 

where A2(w) and B,(o) are unknown functions of w. 
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The velocity components at the plane of the disk can be defined in a general form 
by : 

U(R,d) = (1/R)([f(R)+RUm]fZ-g(R)P} ( 1  c R c 00). (2.6) 

The kinematic boundary conditions in the matching plane z = d require that the 
velocity vanish for R Q 1 and that the velocity be continuous for R 2 1. 

u;(R,d) =f(R)/R+U, (1  < R) 1. (i = I,II), ( 2 . 7 ~ )  
= o  (0 Q R G 1)j 

uk(R,d) = -g(R)/R (1 < R) 1 fi = 1.11). (2.7b) 
I ,  

= o  (0 Q R G 1)) ' 

In  addition, the dynamic matching of the two fields requires that the normal and 
tangential components of the stress tensor be continuous at the interface between 
the two regions. This condition can be replaced as shown in Dagan et al. ( 1 9 8 2 ~ )  by 
matching the pressure and its gradient. Namely, 

p'(R, d )  = pII(R, 4, ( 2 . 8 ~ )  

(2.8b) 

Application of the kinematic boundary conditions (2.7a, b) leads to  solutions for 
Al(w) and B,(o) in terms of the unknown constant coefficients in the spherical solution 
$, and the unknown velocity functionsf(R) and g(R). The resulting velocity field in 
region I is given by 

a 

[Bn/3A(R,z)+D,6;(R,z)], ( 2 . 9 ~ )  
n= 2 

00 

- wxjlm 9 ( t )  Jl(ot) dt wJ,(oR) e-wz dw + [Bn/3k( R, z )  + Dn 6:,(R, z ) ] ,  (2.9 b) 
n=2 

where x = d - z and pk, 6Ay /3:, 8: are given in appendix A. 
Similarly, an expression for the velocity field 1111 can be obtained: 

UF = -som (( 1 + ox)/: g ( t )  J,(wt) dt - xU,J1(w) + wx f ( t )  Jo(wt) dt 
11, 

241 = u, +Io- (( 1 - wx)  

(2 .104  
J A W )  f ( t )  Jo(wt) dt - (1  - ox) u, - 

w 

In  order to apply the pressure-matching conditions (2.8), the expression for the 
pressure field in each region is obtained by integrating the creeping-motion equations 
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with the appropriate stream-function representation. For the half-space containing 
the sDhere the result is 

and for the infinite half-space z > d 

(2.11 b )  

where the expressions for B,(w), i = 1,2,  are given in appendix B. Application of the 
pressure-matching conditions results in 

~omwf*(w)Jo(wR)dw = F*(R) (1 < R < m), ( 2 . 1 2 ~ )  

where 

and P* and a* are given in appendix C. 
The integral equations (2.12) together with 

/;f*(w)J,(wR)dw = -um (0 G R G l), 

/omg*(o)Jo(oR)dw = 0 (0 < R < 1 )  

(2.12 b )  

( 2 . 1 3 ~ )  

(2.13b) 

(2.14a) 

(2.14b) 

comprise two sets of dual integral equations for f * and g*. The solution of (2.12) and 
(2.14) follows from the results of Tranter (1951), yielding 

where (2.16) 

The functions F* and G* are now substituted into (2.16) and integrated. Then M, 
il(, are substituted into (2.15),  where the inner integral can be performed analytically. 
The solutions for f * and g* are substituted back into the velocity-field expressions. 
After considerable algebraic manipulation one obtains 

m 

n=8 

2 +- U,sS!(R,z), ( 2 . 1 7 ~ )  
?r 

n= 2 

2 + U, (1 -;[Sil(R, 2) + x@(R, s)]) (2.17 b )  

where the functions a:, a;*, 9,*,9,** and Sf are defined in appendix D. 
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The only boundary conditions that remain to be sat’isfied are those on the sphere 
surface 

u, = 0, us = v, (2. Ma, b) 

where V is the velocity with which the sphere is translating towards the disk. The 
collocation technique presented in Dagan et al. (1982b) may now be used for this 
purpose. A t  r = a, boundary conditions (2.18) are applied at  M discrete points and 
the series solution (2.17) is truncated after M terms. This generates a system of 2M 
linear algebraic equations for 2M unknown coefficients Bn and Dn of the spherical 
solution. The solution for the velocity field is completely known once these coefficients 
are determined. 

The hydrodynamic force acting on the sphere is found from Happel t Brenner 

F = &D,. (2.19) (1973, p. 115) to be 

Using the hydrodynamic interaction coefficient A, one can write the drag force on a 
sphere translating coaxially with velocity V towards the disk in quiescent fluid as 

F = 67raVAm. ( 2 . 2 0 ~ )  

For the case of uniform flow past a rigidly held sphere situated axisymmetrically at  

F = 67r~U,A(~d .  (2.20 b )  

a distance d from a disk, the drag force is given by 

Equating expressions (2.19) and (2.20), one finds 

(2.21a) 

(2.21b) 

In the general case, when both the fluid and the sphere are in motion, the drag 

F = 6na( V P  + Urn Wd). (2.22) force is given by 

3. Solutions for the motion of a sphere towards a disk 
In this section, collocation solutions for the general axisymmetric motion of the 

sphere will be presented for both (a) translation of the sphere in quiescent fluid and 
(b) uniform flow pa& the fixed sphere-disk configuration. 

Before proceeding with the presentation of these results it should be noted that 
(2.17) can be simplified for the limiting case, a disk of infinite radius, by substituting 
the dimensional variables and allowing b’ to approach infinity. The resulting equations 
for the velocity field are 

4 = X [BnPk(R, 2) +Dnai(R,z)I, (3.1 a) 
m 

n= 2 

m 

(3.1 b )  
n=2  

Equations (3.1 a, b) represent the solution for the problem of a sphere translating 
perpendicular to an infinite plane wall. Application of the collocation technique for 
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a/a 
6-0 

2.0 

1.6 

1.1 

d/a 
6.0 

2.0 

1.6 

1.1 

M 
6 
8 
6 
8 

10 
12 
14 

8 
10 
12 
14 

16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 

M 
6 
8 
6 
8 

10 
12 
14 

8 
10 
12 
14 
16 

16 
18 
20 
22 
24 
26 
28 

a = 0.1 

- 1.287 7 
- 1.287 7 
- 2.1268 
-2.1268 
- 2.1268 

- 
- 

- 3.205 4 
- 3.206 6 
- 3.206 6 
- 3.2066 

- 11.468 
- 11.469 
- 11.469 
- 11.469 - 

- 
- - 
- - 
- 

a = 0.1 

0.062987 
0-062 987 

0.006 680 0 
0.006 680 0 
0.006 680 0 

- 
- 

0.003 667 7 
0.003 657 8 
0.003 667 8 
0.003 667 8 

0.001 9244 
0.001 924 4 
0.001 924 4 

- 

- 
- 
- 
- 

(a) 
a = 0.6 

- 1.2164 
- 1.2154 

- 2.1798 
-2.1798 
-2.1798 

- 
- 

- 3.296 1 - 3,2962 - 3.2962 
- 3.2962 

- 11.669 
- 11.669 
- 11.669 
- 11.669 

- 
- 
- 
- 
- 
- 
- 

(b)  
a = 0-6 

0.664 63 
0.664 63 

0.37088 
0.37097 
0.370 97 
0.37097 - 
0.277 03 
0-27702 
0.27702 
0.277 02 

- 
0.192 04 
0.19204 
0.192 04 - 

- 
- 
- 

a = 1.0 

- 1.1166 - 1.1166 
- 1.8930 
- 1.893 6 
- 1.893 6 - 1.893 6 
- 1.8936 

- 3.081 2 
- 3.081 3 
- 3.081 2 
- 3.081 2 
- 11.786 
- 11.784 
- 11.784 
- 11.784 

- 
- 
- - 
- 
- - 

a = 1.0 
0.84076 
0.840 76 

0.77623 
0.77469 
0-77463 
0,77463 
0.77463 

0.763 80 
0.763 83 
0.763 91 
0.763 90 
0.763 90 

0.73206 
0.73200 
0-73200 
0.73200 

- 
- 
- 

a = 10 

- 1.01 12 
-1.0112 

- 1.061 9 
- 1.061 9 
- 1.062 0 
- 1.062 0 
- 1.0620 

- 1.1069 
- 1.1048 - 1.1046 
- 1.1046 

- 1.6444 
- 1.6708 
- 1.633 8 
- 1.623 8 
- 1.629 9 
- 1.641 7 - 1.661 9 
- 1.667 9 - 1.6600 - 1.660 1 
- 1.6696 

a = 10 

0-986 75 
0.986 76 

0-99701 
0497 00 
0.996 99 
0.996 99 
0.996 99 

1.007 6 
1.007 6 
1.007 6 
1,007 6 

- 
1.008 3 
1.008 6 
1-008 6 
1.008 6 
1.008 6 
1.008 6 
1.0084 

TABLE 1. Convergence of (a) A 0  and (b)  h(Um) for various 
sphere radii and sphere-to-disk spacings 
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this case was demonstrated in Dagan et al. (19823) and compared with the exact 
solution of Brenner (1961). Convergence to five significant figures was achieved by 
the collocation solution for all spacings tested in the range 1.1 < d/u < 10.1. 

As in the case of the motion of a sphere towards an orifice, the most advantageous 
collocation boundary point to choose is 8 = in, since this point has the greatest 
control of the projected area of the sphere normal to its direction of motion. In  addi- 
tion, the points 8 = 0, n are important because they control the gap between the sphere 
and the disk and are known to have increasing effect on the speed of convergence of 
the results as the gap between the sphere and the disk is made very small. Unfortu- 
nately, the coefficient matrix becomes singular if these points are used. Therefore, 
convergence trials for the force coefficient using four adjacent points 8 = 0 + 6, an k 6, 
n - 6 as 6 --f 0 were conducted. Tables presenting the results of these tests are contained 
in Dagan (1980) and have been omitted for ,brevity. Convergence for A@') and is 
obtained to five significant figures for 6 < 0-01 at all spacings tested. 

The rate of convergence of the solutions as the number of boundary points is 
increased is examined for various spacings and sphere radii in tables 1 (a and b). The 
starting value of M for a given case in these tables is based on the results of similar 
tests conducted for the motion of a sphere towards an orifice. The slowest rate of 
convergence is found a t  d/a = 1.1 and a = 10 for the two flows considered. Conver- 
gence to only three significant figures is obtained withM = 34for the sphere translating 
towards the disk and M = 22 for the flow past a stationary sphere-and-disk configura- 
tion. Therefore for large values of a and small spacings, where convergence is slow, 
the solutions presented are accurate only to three significant digits. The slow rate of 
convergence for the case of the sphere translating towards the disk can be explained 
by the fact that large fluid velocities can be generated in the intervening fluid gap 
when its dimensions become small compared with the sphere radius. In the case of 
flow past a stationary s p h e r A k  configuration the slow convergence is due to the 
complexity of the flow in the gap between the two surfaces. 

The final results for the hydrodynamic interaction coefficients A@') and A(u00) are 
shown in figures 2 and 3. In  addition, for reference, converged values are presented 
in tables 2 and 3. Examination of the results reveals two interesting features. First, 
in the case of a sphere translating towards a disk (table 2) the force acting on a sphere 
smaller than the disk increases above the value of the force acting on a sphere trans- 
lating perpendicular towards an infinite plane wall (a = 0), and approaches that value 
as the sphere approaches the disk. These results can be explained by the fact that the 
edge of a finite disk introduces a strong resistance to the fluid motion demonstrated 
by the singularity in the pressure field at R = 1.  This resistance can be greater than 
the total integrated resistance along an infinite wall where the fluid motion is almost 
parallel to the boundary. Hence a larger force is required to push the fluid around the 
hinge point R = 1 than along an infinite boundary. When the spacing between the 
sphere and the disk decreases further, the edge effect is diminished, and the flow field 
in the vicinity of the sphere resembles the flow for the case of a sphere approaching 
an infinite wall. 

The second interesting result is observed for the case of uniform flow past a rigidly 
held sphere-and-disk configuration. Here, for spheres larger than the disk, the drag 
force acting on the sphere for values of d/u near 1.0 becomes slightly larger than the 
force acting on an isolated sphere in a uniform stream. These results motivated 
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FIQURE 2. a disk. 

Spacingdlu 

FIQURE 3. Drag on a rigidly held sphere in a uniform 
flow past a sphere-disk configuration. 
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additional tests to assure that convergence ww actually achieved. In the cases in 
question the number of boundary points was increased much beyond the upper limit 
shown in table 3. Owing to the limitation of excessive computation time when the 
spacing is small the tests were conducted for intermediate spacings up to d/a = 1.5 
(e.g., for a = 10 and d/a = 0.5, 28 points were selected). The results obtained from 
these tests matched the values in table 3 exactly. 

To help understand this intriguing behaviour the velocity field waa examined for 
a = 2.5 and various spacings. Figures 4 and 5 show the velocity field for the flow past 

F L M  122 I0 
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FIGURE 6. Wake size: 1, for the sphere wake; 1, for the disk wake. a = 2.5. 

a spheredisk configuration in the gap between the two objects. The velocity vectors 
shown with arrowheads have been drawn to scale, and show the magnitude and direc- 
tion of the fluid motion. For cases where the magnitude of the velocity is too small to 
be visible on the scale shown the direction of the fluid motion is shown by a straight 
line without an arrow at the indicated point. Figure 4 shows the flow field at  d / a  = 2. 
Two separated regions of trapped fluid are visible on the sides of the sphere and the 
disk facing each other (additional computations have shown that there are no separ- 
ated regions in front of the sphere and behind the disk). The flow field shown is similar 
to the one presented in Davis et al. (1976) for the flow past two equal spheres. At  
closer spacing (d/a = 1.5, figure 5) the wakes coalesce, and the two ring vortices have 
merged. At  very small spacings (d /a  c 1.5) the flow field cannot be compufed accu- 
rately owing to the insufficient convergence of the spherical constant coefficients B, 
and D,. In this case, as demonstrated by Davis et al. (1976), the number of ring vortices 
increases and a very complex wake structure is formed. The formation of the primary 
ring vortices and their coalescence into one vortex shown in figure 5 was examined by 
calculating the fluid velocity on the axis of symmetry R = 0 in the gap between the 
sphere and the disk. The lengths of the separated flow regions near the sphere (1,) and 
near the disk (la) are shown in figure 6 as functions of sphere-to-disk spacing d .  One 
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 FIG^ 7. Re~icaled hydrodynamic correction factor for uniform flow past a 
sphere-disk oonfigumtion for small values of a. 

notes that the separated flow regions on the disk are both much larger and form a t  
significantly larger separation distances than the sphere. 

Although the flow field shown in figures 4 and 5 demonstrates clearly the separation 
of the flow from the boundaries, it does not offer an explanation for the increased drag 
on the sphere. Intuitively, this behaviour might result from the weak singularity in 
the pressure and the shear-stress fields a t  R = 1, which introduce high shear rates 
and pressure gradients in the vicinity of the disk edge that affect the force on the 
sphere when it is larger than the disk and in close proximity. In this context it should 
be noted that, although the drag on the sphere exceeds the value of the drag on an 
isolated sphere in a uniform stream, the total drag force on the sphere and the disk 
combined is smaller than the sum of the drag forces on an isolated sphere and an 
isolated disk in uniform flow. 

Finally, it is important to examine the behaviour of the drag force on a rigidly held 
sphere in the limit when the disk radius becomes much larger than that of the sphere. 
For this purpose an alternative expression for the drag force can be written by intro- 
ducing the undisturbed local fluid velocity as follows: 

F = 6naUW) ,  (3.2) 

where U is the velocity on the disk axis and is given in Sampson (1891) for flow past a 
disk in the absence of the sphere by 

10-2 
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Comparing (3.2) and (2.20b) we can write 

2. Dagan, R. Pfefler and S. Weinbaum 

A(") = h(Urn)-  urn 

U' (3.4) 

Results for A(U)  are plotted in figure 7. Cleady, for small values of a the results 
converge into a single curve independent of that value. 

4. Solutions for the drag force acting on the disk 
The expression for the drag force acting on the disk in the presence of the sphere 

can be obtained by integrating the pressure over both the left and right surfaces. 
The normal and tangential shear-stress components on the surface of the disk have no 
contribution to the drag force. The normal component au,/az, which can be expressed 
via the continuity equation in terms of the radial velocity component (1/R) aRu,/aR, 
vanishes at z = d and R c 1 .  The tangential component acts in the radial direction 
and, therefore, has no effect on the force in the z-direction. Hence 

Fd = 2nI1pI(R,d)-p1I(R,d) 0 RdB 

n-2 - D n + l G  sm-I(d)] + 4 0 2  arccotd, (4.1 

where Sn(d) is given by 
Sn(d) = (1  +dz)-tnsin (narccotd). (4.2) 

Clearly, when the sphere is far from the disk (d --f a), (4.1) reduces to 

Fd = lSU,, (4.3) 

which is in agreement with the exact solution for uniform flow past a disk in the 
absence of the sphere (Sampson 1891). 

The dimensionless drag force Fd was computed for both cases when the sphere is 
translating towards the disk and for the flow past the stationary sphere-disk con- 
figuration. The drag correction factor for these two flows is defined respectively by 

(4.4a) 

(4.4b) 

where U, is the uniform stream velocity and V is the sphere velocity. 
Results for hi') and hiurn) are shown in figures 8 and 9 respectively. Inspection of 

figure 8 reveals that the drag on the disk increases monotonically with decreasing 
spacing when the sphere is moving towards the disk in quiescent fluid. When both 
the sphere and the disk are fixed in the uniform stream (figure 9), the drag on a disk 
smaller than the sphere (a > 1 )  decreases with decreasing gap width to its minimum 
value at contact. However, when a < 1, the value of the drag is smallest before con- 
tact and increases slightly with decreasing gap width. Additional computations have 
shown that the value of a at which this transition takes place is about 0.86. A similar 
behaviour of the drag force has been shown for the motion of two unequal spheres 
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Spacing dlu 

FIGURE 8. Drag on a disk due to an axisymmetric motion of a sphere. 
(The dashed curves are used for clarity.) 

0-01 1 1 I 
4 7 10 

Spacing dlu 

FIGURE 9. Drag on a disk in a uniform flow past a sphere-disk configuration. 

along their line of centres (Cooley & O’Neill 1969). Furthermore, this phenomenon 
can be also seen in figure 3 for the drag acting on the sphere in the same flow conditions. 
In this case the transition occurs when the value of a is about 1.08. 
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FIGURE 10. Velocity of a neutrally buoyant sphere carried by a uniform flow 
towards a disk. - - - -, extrapolated results. 

5. The &symmetric motion of a neutrally buoyant sphere carried by 
uniform flow towards a stationary disk 

In  this section the motion of a neutrally buoyant sphere carried by the flow towards 

Using (2.22) and requiring zero net force on the sphere, one can obtain the expression 
a stationary disk is considered by superposing the two solutions presented in $3. 

for the sphere velocity V in the form 

Equation (6.1) can be written in an alternative form by using the expression for the 
centre-line undisturbed local fluid velocity (3.3). Hehce, (5.1) becomes 

1 +a 11-l - V - -*)[t-:(arccotd+-2 . 
u - A(Q 

Equation (5.2) is plotted in figure 10 for various sphere sizes, indicating that the 
sphere velocity increases above the local fluid velocity before it decays to zero as the 
sphere approaches the disk. The dashed extensions in this figure are extrapolated 
results for d/a < 1.1. Note that the actual distance d is plotted rather than d /a  so 
that the curves should not overlap. 

6. Application of the solution technique in future research 
This paper presents a matching technique for treating complex flow geometries 

where the field is divided into simply bounded regions which are matched kinematically 
and dynamically along the interface between the regions. The paper also demonstrates 
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that the boundary-collocation technique can be used efficiently in axisymmetric flows 
containing discontinuous planar surfaces that cannot be defined by a natural co- 
ordinate system. 

The boundary-collocation-series technique presented herein and its extension to 
unbounded (Ganatos, Pfeffer & Weinbaum 1978) and bounded (Ganatos, Pfeffer & 
Weinbaum 1980; Ganatos, Weinbaum & Pfeffer 1980) three-dimensional motion of 
spheres can be applied to a wide variety of unsolved strong-interaction problems such 
as the motion of a sphere into a two-dimensional slit, the three-dimensional motion 
of a sphere into a pore, the off-axis motion of a sphere in a circular cylinder or the 
tumbling of a spheroid near a planar boundary. A serious limitation of the solution 
technique is the long computation time required for the numerical evaluation of the 
inversion integrals representing the disturbances generated by the confining boun- 
daries. Special care must therefore be taken in writing an efficient program in order 
to avoid repetitive calculations. 

In  the past decade two other solution techniques have been introduced for treating 
more varied boundary-value problems involving mixed or non-orthogonal co-ordinate 
systems: the finite-element method and an integral-equation approach. At the request 
of one of the referees we have briefly outlined the advantages and disadvantages of 
each approach compared with the boundary-collocation-series technique used in this 
and previous studies by the authors, to help the reader decide which is the most 
efficient technique for treating future problems. The application of finite-element 
methods to  low-Reynolds-number flow problems has thus far been confined to two- 
dimensional or axially symmetric finite-domain problems. This is an approximate 
numerical method (approximating functions used in each element do not satisfy the 
governing differential equations exactly but in some optimal average sense) whose 
most important advantage is that it can treat irregular body shapes. An interesting 
application of the method, which demonstrates this versatility, is the paper by Skalak 
et al. (1972) on the axially symmetric motion of irregular-shaped rouleaux periodically 
distributed along the axis of a circular cylinder. The periodicity requirement is 
important since it reduces the domain to finite dimensions. At present the principal 
drawbacks of this method are that it is difficult to treat infinite boundaries or three- 
dimensional motions. 

The integral-equation approach and the boundary-collocation technique employed 
herein differ fundamentally from the finite-element method in that each of the terms 
in the solution is an exact solution of the governing Stokes slow-flow equation. The 
principal difference between the integral-equation solution and the boundary tech- 
nique is that in the former one introduces a continuous distribution of fundamental 
solutions (Green functions) at the surface of the body to be represented that already 
satisfies the no-slip boundary conditions at all other boundaries in the flow, whereas 
in the latter one represents the body by a uniformly truncated series of specially chosen 
internal singularities that are compatible with the natural orthogonal co-ordinate 
geometry of the body. In the integral-equation approach the essential mathematicit1 
problem is to find the Green function (commonly called Stokeslet) that satisfies the 
viscous-flow boundary conditions at all other boundaries. In  the boundary-colloc a t 1011 . 
technique the equivalent mathematical problem is to find the Fourier integral reprc- 
sentation of the wall disturbances that satisfies the boundary conditions 011 the 
confining walls for each order internal singularity. The important advantngcs of the 
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boundary approach are that the singularities representing the body are relatively 
simple since they do not have to satisfy the no-slip boundary conditions on the con- 
fining walls (the distribution of wall singularities is required to do this) and they are 
a natural co-ordinate expansion or in some sense an optimal representation of the body 
geometry. Thus, for a finite body that conforms to some orthogonal co-ordinate 
geometry the boundary-collocation technique will be a substantially more efficient 
approach than a numerical integral-equation solution. This is easily illustrated by 
considering the flow geometry in the present paper or its complementary study, the 
axial motion of a sphere towards an orifice (Dagan et al. 19823). To apply the integral- 
equation method, one would first have to determine the three-dimensional motion of 
a Stokeslet approaching a disk or orifice. This is a difficult mathematical problem for 
the general three-dimensional case. The only existing solution is for the axial motion 
towards an orifice (Davis, O’Neill & Brenner 1981). This fundamental solution would 
then be integrated in the azimuthal direction around the surface of the body to find 
the basic ring singularity that satisfies the no-slip conditions on the disk or orifice walls 
(for the equivalent problem of an axisymmetric body in unbounded flow see Youngren 
& Acrivos 1975).t Finally, a superposition integral would be written using the ring 
singularity just described as the kernel of an integral equation for the unknown surface 
singularity distribution. 

There are, however, types of problems for which the integral-equation approach is 
either better suited or perhaps the only approach. This is in general true for the motion 
of slender bodies near boundaries. The motion of a Stokeslet near one wall (Blake 
1971), between two parallel plane walls (Liron & Mochon 1976) or in a circular cylinder 
(Liron & Shahar 1978) serves as the Green function for these problems. For non- 
slender bodies that do not conform to orthogonal co-ordinate surfaces, the boundary 
collocation technique can still be used, but the convergence of the truncation series is 
difficult to predict. For example, point-centred or distributed spherical solutions can 
be used, and a good numerical approximation obtained for non-spherical bodies, but 
the solutions may not be uniformly convergent (for a discussion of the equivalent 
unbounded axisymmetric body problem see the appendix in Gluckman et al. 1972). 
Thus, for more varied axisymmetric three-dimensional objects the extension of the 
integral technique of Youngren & Acrivos (1975) to bounded-flow problems might be 
required. However, as a general rule for bodies that do conform to a natural CO- 

ordinate geometry the boundary-collocation technique would be the preferred 
approach, since it provides a more efficient description of the disturbance produced 
by the body. 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG-78-22101 and The City University of New York Computer 
Center for the use of their facilities. The above work has been performed in partial 
fulfilment of the requirements for the Ph.D. degree of Z. Dagan from The School of 
Engineering of The City College of The City University of New York. 

t The Green function derived in Gluckman et a2. (1971) for an arbitrary axisymmetric body 
is based on an oblate spheroidal singularity of vanishing aspect ratio rather than a ring Stokeslet. 
This is really an internal singularity whose focal ring lies on the surface of the body. The integral 
equation obtained in Gluckman et al., while equivalent to that in Youngren & Acrivos, has a 
different kernel. 
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Appendix A 
This appendix contains a listing of the functions in (2 .9)  : 

~:(R,z) = B~(R,z)-BA(R,~~-~)+~(~-z)(~+ i p ; + , ( ~ , 2 a - ~ ) ,  (A 1) 

SA(R, z )  = Dh(R, z )  - Dk(R, 2d - z )  - ( 2 / n )  (n - 1 )  (n - 3)  (d - z )  B,!+,(R, 2d - 2 )  

+2(2n-3)d(d-z )Bk(R,2d-z ) ,  (A 2) 

(A 3)  pL(R,z) = B:(R,z)-Bk(R,2d-z)-2(d-~)(n+ l )B:+, (R,2d-z ) ,  

S:(R, z )  = D:(R, z )  - DE(R, 2d - z )  + 2(n - 2)  (d - z )  BE-,(R, 2d - 2 )  

- 2(2n - 3)  d(d-2) 2 d - z ) ,  (A 4) 
where 

n + l  1 2 2 DA(R,z) = 

P, are Legendre polynomials of order n, and I, are Gegenbauer functions of the first 
kind of order n and degree - 4. 

Appendix B 
This appendix contains a listing of the A,(w) and B,(w) functions (i = 1,2)  con- 

tained in (2 .3)  and (2 .5)  in terms of the unknown velocity in the plane of the disk and 
the unknown spherical coefficients B, and D,: 
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where 
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wn-l 
~ z ( w ,  d) = IOm ~ ; ( t ,  d)  t ~ , ( w t )  dt = e-wd, 

n. 
"12-3 

Dh(t, d )  tJl(wt) dt = - [ (2n - 3) wd - n(n - 2)] e-wd, 

Bi(t, d )  tJo(wt) dt = - e-wd 

(B 6) 

(B 7 )  

n! 

n! ' 

Dz*(w, d)  = s," D;(t, d )  tJo(wt) dt = - [(2n - 3)  od - (n - 1 )  (n - 3)]  e-wd. ( B  8 )  

Wn-l 

wn-3 

n! 

Appendix C 
This appendix contains a listing of the functions F* and G* appearing on the right- 

hand side of the integral equations (2.12): 

where Bz, Bz*, DE and D:* are given in appendix B. 
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The integrals defined by (D 5 ) ,  (D 6) can be evaluated using the results in Erddlyi 
et al. (1954, vol. 1, p.  101; vol. 2, pp.  11, 19). Then 

&Y(R,x,t) = R - 1 [ 1-X- t2;uh2]Y 

t2  + h2 [ 4z2 z2(t2 + he) 
Rhu U u (L h 2 u y  + $)I &:(R,x,t) = - 1+-- 

where h and h, are the roots of the algebraic equations 

b4 - b2( R2 + X' - t 2 )  - x't' = 0, ( D  10a) 

g+h:(R2+X2-1)-x2 = 0, ( D  lob)  

u = [(R2+~2-t2)2+4~2t~]),  ( D  l l a )  

U~ = [(R2+22- 1 ) 2 + 4 ~ ~ ] * .  ( D  11 b)  

The solution (2.17) satisfies the no-slip boundary conditions on the surface of the 
disk and the stress-tensor matching condition with region I1 for any value of the 
constant coefficients B,, and D,. The single integrals in the infinite series in (2.17) 
must be performed numerically. In this regard, it should be noted that the expressions 
for &;I and &! given by (D 9a, b) are prone to large round-off errors when R is small 
and h - x. Therefore 

and u and ul are defined by 

should be computed using the substitution 

R2h2 

(h2+t2) (h+z)'  
h-x = 

which results directly from (D 1Oa). &! can be obtained in an alternative form by 
differentiating &il with respect to x. Hence 
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